Overview

This protocol outlines how to isolate, wash, and count nuclei suspensions for use with the Chromium Single Cell ATAC Solution. Cryopreserved primary cells (PBMCs) and cell lines (GM12878 cells; EL4 cells) were used to develop this protocol. PBMCs were cryopreserved in IMDM + 40% FBS + 15% DMSO. Cell lines were cryopreserved in RPMI + 15% FBS + 5% DMSO. Optimization of some protocol steps (e.g. lysis time, centrifugation speed/time and filtration steps) may be needed based on cell type.

The recommended buffer compositions, final nuclei suspension concentration, and the wash step guidelines presented in this protocol for nuclei sample preparation are critical for optimal Chromium Single Cell ATAC Solution performance. Failure to adhere to these guidelines may result in compromised microfluidics chip operation.

Additional Guidance

Cells carry potentially hazardous pathogens. Follow material supplier recommendations and local laboratory procedures and regulations for the safe handling, storage and disposal of biological materials.

Cell Sourcing

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Species</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM12878</td>
<td>Human</td>
<td>Coriell Institute</td>
</tr>
<tr>
<td>EL4</td>
<td>Mouse</td>
<td>ATCC</td>
</tr>
<tr>
<td>Normal Peripheral Blood MNC (PBMC)</td>
<td>Human</td>
<td>AllCells</td>
</tr>
</tbody>
</table>

Preparation – Buffers

Diluted Nuclei Buffer

- **Maintain at 4°C**
 - **Nuclei Buffer** (20X): 20X 1X 50 µl
 - **Nuclease-free Water**: - - 950 µl

See Appendix for DNase Treatment specific reagents & buffers

Specific Reagents & Consumables

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Item</th>
<th>PartNumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x Genomics</td>
<td>Nuclei Buffer* (20X)</td>
<td>2000153/2000207</td>
</tr>
<tr>
<td>Thermo Scientific</td>
<td>Digitonin Tubes, 0.2 ml, flat cap tube**</td>
<td>BN2006 AB0620</td>
</tr>
<tr>
<td>Sigma-Aldrich</td>
<td>Trizma Hydrochloride Solution, pH 7.4</td>
<td>T2194 59222C</td>
</tr>
<tr>
<td>Sigma-Aldrich</td>
<td>Sodium Chloride Solution, 5 M</td>
<td>M1028 74385</td>
</tr>
<tr>
<td>Sigma-Aldrich</td>
<td>Magnesium Chloride Solution, 1M</td>
<td>130-091-376</td>
</tr>
<tr>
<td>Bel-Art</td>
<td>MACS BSA Stock Solution</td>
<td>H13680-0040</td>
</tr>
</tbody>
</table>

*Included in the 10x Genomics Single Cell ATAC Library Kits

**ONLY for Low Cell Input Nuclei Isolation protocol
Protocol Overview

1. Thaw Cells

- **Based on cell type, thaw cells using the protocol for thawing cell lines or primary cells/fragile cells**

 - Resuspend cell pellet (in 1 ml PBS + 0.04% BSA)
 - Determine cell concentration
 - **Cell count >100,000?**
 - No: See Appendix for Low Cell Input Nuclei Isolation protocol
 - Yes: DNase Treatment?
 - Yes: DNase Treatment protocol
 - No: Proceed to Chromium Single Cell ATAC Solution User Guide (see References)

2. Nuclei Isolation

- **Add cell suspension to 2-ml tube**
- **Centrifuge (300 rcf, 5 min)**
- Remove Supernatant
- Add Lysis Buffer to pellet
 - Pipette mix
 - **Incubate on ice (3-5 min)*
 - *Optimize time for complete cell lysis
- Add Wash Buffer
 - Pipette mix
- **Centrifuge (500 rcf, 5 min)**
- Remove Supernatant
- DO NOT disturb pellet
- **Resuspend in Diluted Nuclei Buffer**
 - Critical for optimal assay performance
- Determine final nuclei concentration

Proceed to Chromium Single Cell ATAC Solution User Guide (see References)
Protocol

If using fresh cells, perform 1–2 washes with PBS + 0.04% BSA, determine cell count, and proceed to Nuclei Isolation (step 2).

1. **Thaw Cells** (if using frozen cells)

For cell lines (used for GM12878 and EL4 cells):

a. Remove cryovials from storage, thaw in the water bath at 37°C for 1–2 min. Remove from the water bath when a tiny ice crystal remains.

b. Pipette mix the cells and transfer to a 15-ml conical tube containing 10 ml pre-warmed media (RPMI + 10% FBS).

c. Centrifuge at 300 rcf for 5 min.

d. Remove the supernatant without disrupting the cell pellet and resuspend in 1 ml PBS + 0.04% BSA. Transfer to a 2-ml microcentrifuge tube. Rinse the 15-ml tube with 0.5 ml PBS + 0.04% BSA and transfer the rinse to the 2-ml tube containing the cells.

e. Centrifuge at 300 rcf for 5 min.

f. Remove the supernatant without disrupting the cell pellet and resuspend in 1 ml PBS + 0.04% BSA.

g. Pass cell suspension through a 40 µm Flowmi Cell Strainer.

h. Determine the cell concentration using a Countess II Automated Cell Counter (see Appendix) or a hemocytometer.

i. Proceed to Nuclei Isolation (step 2).

 If cell count is <100,000, nuclei may be isolated using the Low Cell Input Nuclei Isolation protocol (see Appendix).

For primary cells/fragile cells (used for PBMCs):

a. Remove cryovial from storage, thaw in the water bath at 37°C for 1–2 min. Remove from the water bath when a tiny ice crystal remains.

b. Transfer the thawed cells to a 50-ml conical tube. Rinse the cryovial with 1 ml pre-warmed media (RPMI + 10% FBS) and add the rinse drop-wise to the 50-ml conical tube while gently shaking the tube.

c. Sequentially dilute cells in the 50-ml conical tube by incremental 1:1 volume additions of media for a total of 5 times (including dilution at step b), with ~1 min wait between additions (see Appendix). Add media (RPMI + 10% FBS) at a speed of 1 ml/3-5 sec to the tube and swirl.

d. Centrifuge at 300 rcf for 5 min.

e. Remove most of the supernatant, leaving ~1 ml and resuspend cell pellet in this volume.

f. Add an additional 9 ml media (1 ml/3-5 sec) to achieve a total volume of ~10 ml.

g. Centrifuge at 300 rcf for 5 min.

h. Remove the supernatant without disrupting the cell pellet and resuspend in 1 ml PBS + 0.04% BSA, gently pipette mix 5x.

i. Transfer to a 2-ml microcentrifuge tube. Rinse the 50-ml tube with 0.5 ml PBS + 0.04% BSA and transfer the rinse to the 2-ml tube containing the cells. Mix by gently inverting the tube.

OPTIONAL Primary/fragile cells may have high amounts of ambient/background DNA. Treating the cells with DNase I prior to nuclei isolation can remove the ambient DNA, improving the quality of Single Cell ATAC libraries (see Appendix for protocol).

j. Centrifuge cells at 300 rcf for 5 min.

k. Remove the supernatant without disrupting the cell pellet and resuspend in 1 ml PBS + 0.04% BSA.

l. Pass cell suspension through a 40 µm Flowmi Cell Strainer.

m. Determine the cell concentration using a Countess II FL Automated Cell Counter (see Appendix) or a hemocytometer.

n. Proceed to Nuclei Isolation (step 2).

If cell count is <100,000, nuclei may be isolated using the Low Cell Input Nuclei Isolation protocol (see Appendix).

2. **Nuclei Isolation**

If using fresh cells, perform 1–2 washes with PBS + 0.04% BSA and determine cell count, before proceeding to step 2a. Nuclei may be isolated from 100,000–1,000,000 cells using this protocol.

a. Add 100,000–1,000,000 cells to a 2-ml microcentrifuge tube. Centrifuge at 300 rcf for 5 min at 4°C.

b. Remove ALL the supernatant without disrupting the cell pellet.

c. Add 100 µl chilled Lysis Buffer. Pipette mix 10x.

d. Incubate for 3-5 min* on ice.

* Cryopreserved PBMCs were incubated for 3 min
* Cryopreserved cell lines were incubated for 5 min

Optimize incubation time based on cell type. Sub-optimal or prolonged lysis times can both alter assay performance. Assess lysis efficacy via the Countess II FL Automated Cell Counter/microscopy (see Results).

e. Add 1 ml chilled Wash Buffer to the lysed cells. Pipette mix 5x.

f. Centrifuge at 500 rcf for 5 min at 4°C.

g. Remove the supernatant without disrupting the nuclei pellet.

h. Based on cell concentration step 2a and assuming ~50% nuclei loss during cell lysis, resuspend in chilled Diluted Nuclei Buffer. See Nuclei Stock Concentration Table and Example Calculation in Appendix. Maintain on ice.

The resuspension in Diluted Nuclei Buffer is critical for optimal Single Cell ATAC assay performance. The composition of the Tris-based Diluted Nuclei Buffer, including Magnesium concentration, has been optimized for the Transposition and Barcoding steps in the Single Cell ATAC protocol. Suspension of nuclei in a different buffer may not be compatible.

i. **OPTIONAL** If cell debris and large clumps are observed, pass through a cell strainer. For low volume, use a 40 µm Flowmi Cell Strainer to minimize volume loss.

j. Determine the nuclei concentration using a Countess II FL Automated Cell Counter (see Appendix) or a hemocytometer.

k. Proceed immediately to Chromium Single Cell ATAC Solution User Guide (see References).
Results

Optimal Cell Lysis

- Total concentration: 3.23 x 10^6/ml
- LIVE: 100%
- DEAD: 0%

Sub-optimal Cell Lysis

- Total concentration: 3.37 x 10^6/ml
- LIVE: 62%
- DEAD: 38%

Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>High fraction of viable cells post cell lysis</td>
<td>Incrementally increase the lysis time and monitor lysis efficacy microscopically.</td>
</tr>
</tbody>
</table>

Trypan Blue Precipitate in the Countess II Slide

Nuclei resuspended in Nuclei Buffer (2X) Nuclei resuspended in Diluted Nuclei Buffer (1X)

DO NOT use nuclei resuspended in 20X Nuclei Buffer. Repeat nuclei isolation and resuspend in Diluted Nuclei Buffer (1X).

Nuclei Quality - Representative Images (Panel A: recommended quality)

Appendix

Illustrative Overview of Incremental 1:1 Volume Additions

Incrementally add media volumes at the indicated points & swirl.

Nuclei Stock Concentration Table

<table>
<thead>
<tr>
<th>Targeted Nuclei Recovery</th>
<th>Nuclei Stock Concentration (nuclei/µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>155-390</td>
</tr>
<tr>
<td>1,000</td>
<td>310-780</td>
</tr>
<tr>
<td>2,000</td>
<td>610-1,540</td>
</tr>
<tr>
<td>3,000</td>
<td>925-2,300</td>
</tr>
<tr>
<td>4,000</td>
<td>1,230-3,075</td>
</tr>
<tr>
<td>5,000</td>
<td>1,540-3,850</td>
</tr>
<tr>
<td>6,000</td>
<td>1,850-4,600</td>
</tr>
<tr>
<td>7,000</td>
<td>2,150-5,400</td>
</tr>
<tr>
<td>8,000</td>
<td>2,460-6,150</td>
</tr>
<tr>
<td>9,000</td>
<td>2,770-6,900</td>
</tr>
<tr>
<td>10,000</td>
<td>3,080-7,700</td>
</tr>
</tbody>
</table>

Example Calculation

Cell count at step 2a: **200,000**

Estimated nuclei count at step 2h (~50% loss): **100,000**

If targeting **5,000** Nuclei Recovery, nuclei pellet at step 2h may be resuspended in **30 µl Diluted Nuclei Buffer** for Nuclei Stock Concentration of **1,540-3,850 nuclei/µl** (see Table above).
Appendix

Nuclei Counting and Viability

Countess II FL Automated Cell Counter is recommended for determining nuclei concentrations. The optimal range of cell concentration for Cell Counter is 1,000–10,000 cells/µl. Refer to manufacturer’s instructions for details on operations.

a. Vortex 0.4% trypan blue stain, centrifuge briefly and aliquot 10 µl per tube.

b. Pipette mix the nuclei suspension. Immediately add 10 µl nuclei suspension to 10 µl aliquot of 0.4% trypan blue stain. Gently pipette mix 10x.

c. Transfer 10 µl trypan blue stained nuclei to a Countess II Cell Counting Slide chamber.

d. Insert the slide into the Countess II FL Cell Counter, and determine the nuclei concentration and viability. <5% of input cells should be viable. Optimize focusing and light exposure.

Low Cell Input Nuclei Isolation

Nuclei may be isolated from 2,000–100,000 cells using this protocol. If cell count is <40,000, centrifuge cell suspension at 300 rcf for 5 min at 4°C and resuspend the cell pellet in 50 µl PBS + 0.04% BSA. Transfer 50 µl cell suspension to a 0.2-ml tube. Proceed directly to step c.

a. Centrifuge cell suspension at 300 rcf for 5 min at 4°C. Remove supernatant and resuspend pellet in PBS + 0.04% BSA for 1,000 cells/µl cell suspension.

b. Add 2,000–40,000 cells to a 0.2-ml tube in a total volume of 50 µl PBS + 0.04% BSA. Approximately 25% of the cell input is expected to be recovered during Chromium Single Cell ATAC sequencing. Always determine nuclei counts after nuclei isolation.

c. Centrifuge at 300 rcf for 5 min at 4°C.

d. Remove 45 µl supernatant without touching the bottom of the tube to avoid dislodging the nuclei pellet.

e. Add 45 µl chilled Lysis Buffer. Gently pipette mix 3x.

The supernatant may be removed in two steps, first with a 100-µl pipette (set to 40 µl), followed by removal with a 10-µl pipette (set to 10 µl).

m. Resuspend the nuclei pellet in 7 µl chilled Diluted Nuclei Buffer (pellet may not be visible).

The use of the Diluted Nuclei Buffer for nuclei suspension is critical for optimal Single Cell ATAC assay performance. The composition of the Tris-based Diluted Nuclei Buffer, including Magnesium concentration, has been optimized for the Transposition and Barcoding steps in the Single Cell ATAC protocol. Suspension of nuclei in a different buffer may not be compatible with these protocol steps.

n. Use 2 µl nuclei suspension mixed with 8 µl Diluted Nuclei Buffer and 10 µl Trypan Blue to determine the cell concentration by a Countess II FL Automated Cell Counter (see Appendix) or a hemocytometer. A final nuclei concentration of 30 nuclei/µl is needed for Targeted Nuclei Recovery of 500.

o. Proceed immediately to Chromium Single Cell ATAC Solution User Guide (see References).
Appendix

DNase Treatment

Specific Reagents

DNase I, RNase-free (includes 10x Reaction Buffer with MgCl₂) from ThermoFisher Scientific, Part Number-EN0521

Preparation – Buffers

<table>
<thead>
<tr>
<th>10X TBS</th>
<th>Stock</th>
<th>Final</th>
<th>5 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-HCl (pH 7.4)</td>
<td>1 M</td>
<td>200 mM</td>
<td>1 ml</td>
</tr>
<tr>
<td>NaCl</td>
<td>5 M</td>
<td>1.5 M</td>
<td>1.5 ml</td>
</tr>
<tr>
<td>Nuclease-free Water</td>
<td>-</td>
<td>3 mM</td>
<td>2.5 ml</td>
</tr>
<tr>
<td>DNase Solution</td>
<td>Stock</td>
<td>Final</td>
<td>1 ml</td>
</tr>
<tr>
<td>Prepare fresh, maintain at 4°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBS</td>
<td>10X</td>
<td>1X</td>
<td>100 µl</td>
</tr>
<tr>
<td>10X Reaction Buffer with MgCl₂</td>
<td>10X</td>
<td>1X</td>
<td>100 µl</td>
</tr>
<tr>
<td>DNase I</td>
<td>1 U/µl</td>
<td>0.1 U/µl</td>
<td>100 µl</td>
</tr>
<tr>
<td>Nuclease-free Water</td>
<td>-</td>
<td>-</td>
<td>700 µl</td>
</tr>
</tbody>
</table>

Primary cells/fragile cells may have high amounts of ambient/background DNA. Treating the cells with DNase I prior to nuclei isolation can reduce the ambient DNA, which may improve the quality of the Single Cell ATAC libraries.

a. Centrifuge the cells in a 2-ml microcentrifuge tube at 300 rcf for 10 min at 4°C.

Using a 2-ml microcentrifuge tube and centrifuging for a longer time (10 min) is critical in maintaining an equal proportion of all cell types.

b. Remove supernatant without disrupting the pellet and resuspend the pellet in 300 µl DNase Solution.

c. Pipette mix 5x and incubate on ice for 5 min.

d. Centrifuge cells at 300 rcf for 10 min at 4°C.

e. Remove supernatant without disrupting the pellet and resuspend the pellet in 1 ml PBS + 0.04% BSA.

f. Repeat steps d-e for a total of 2 washes.

g. Pass cell suspension through a 40 µm Flowmi Cell Strainer.

h. Determine the nuclei concentration using a Countess II FL Automated Cell Counter (see Appendix) or a hemocytometer.

i. Proceed directly to Nuclei Isolation (step 2).

© 2019 10X Genomics, Inc. (10x Genomics). All rights reserved. Duplication and/or reproduction of all or any portion of this document without the express written consent of 10x Genomics, is strictly forbidden. Nothing contained herein shall constitute any warranty, express or implied, as to the performance of any products described herein. Any and all warranties applicable to any products are set forth in the applicable terms and conditions of sale accompanying the purchase of such product. 10x Genomics provides no warranty and hereby disclaims any and all warranties as to the use of any third-party products or protocols described herein. The use of products described herein is subject to certain restrictions as set forth in the applicable terms and conditions of sale accompanying the purchase of such product. A non-exhaustive list of 10x Genomics’ marks, many of which are registered in the United States and other countries can be viewed at: www.10xgenomics.com/trademarks. 10x Genomics may refer to the products or services offered by other companies by their brand name or company name solely for clarity, and does not claim any rights in those third-party marks or names. 10x Genomics products may be covered by one or more of the patents as indicated at: www.10xgenomics.com/patents. The use of products described herein is subject to 10x Genomics Terms and Conditions of Sale, available at www.10xgenomics.com/legal-notices, or such other terms that have been agreed to in writing between 10x Genomics and user. All products and services described herein are intended FOR RESEARCH USE ONLY and NOT FOR USE IN DIAGNOSTIC PROCEDURES.

The use of 10x Genomics products in practicing the methods set forth herein has not been validated by 10x Genomics, and such non-validated use is NOT COVERED BY 10X GENOMICSS STANDARD WARRANTY, AND 10X GENOMICS HEREBY DISCLAIMS ANY AND ALL WARRANTIES FOR SUCH USE. Nothing in this document should be construed as altering, waiving or amending in any manner 10x Genomics terms and conditions of sale for the Chromium Controller or the Chromium Single Cell Controller, consumables or software, including without limitation such terms and conditions relating to certain use restrictions, limited license, warranty and limitation of liability, and nothing in this document shall be deemed to be Documentation, as that term is set forth in such terms and conditions of sale. Nothing in this document shall be construed as any representation by 10x Genomics that it currently or will at any time in the future offer or in any way support any application set forth herein.

References

- Chromium Single Cell ATAC Reagent Kits User Guide (CG0000168)
- Chromium Next GEM Single Cell ATAC Reagent Kits v1.1 User Guide (CG000209)